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A Sustainability Framework for Model Evaluation
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Al Carbon Footprint

Year Model Number of Parameters CO> Emissions Emcby.
2017 Transformerp,qe [1] 65M 12 kg [2] _ Carbon Inensity
2019 BERT 4,ec [3] 110M 652 kg [2] @ ~50xmore

2020 GPT-3 [4] 1758 552 mt [5] 4 ~ 1000x more

2023 GPT-4 [6] 1T? 100T? ?

Table 1: Overview of recent large language models and their estimated carbon costs of training

Figure 1. The carbon cost of training a BERT language model is comparable to a round trip trans-American jet travel.
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Call for Green Al

Red Al refers to Al research that improves accuracy through massive
computational power while disregarding the costs.

Energy \

Green Al refers to Al research that yields novel results while taking
computational costs into account and encouraging reduced resource
consumption.

Green Algorithms 1
Green Software Foundation

Carbon Tracker [8]
Machine Learning Emissions Calculator Tool [9]

2
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Proposed Measures
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Efficiency ‘

.
Carbon Intensity

N Efficiency
S Amount of energy consumed to train and re-train a model

Energy

> Indicators of energy consumption, e.g., runtime, hardware used

> Carbon Intensity

> Power-generation source, e.g., solar, hydro, wind, fossil fuels
> An estimate of the carbon emissions generated
S Carbon intensity of the data centers used
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Social Consequences

N Relocating computing centers to low-carbon regions may put local
residents disproportionately at risk and is not the ultimate solution to Al
sustainability.

N Take into account whether the people there would benefit from the model
to be trained and how much spatial overlap there is between the
population that benefits and the population that is affected.

— evaluate potential risks and benefits to populations that may be affected
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Social Consequences — Mobility Data Privacy

N Protecting privacy in mobility data is crucial as location information
can reveal sensitive details like

> home,

> workplace, and
> personal habits

N Challenges in keeping mobility data private include dealing with
N patterns in location information,
> understanding complex location meanings, and
> addressing various uses like contact tracing

Mokbel, M., Sakr, M., Xiong, L., Zifle, A., Almeida, J., Aref, W., ..., Graser, A., ... & Zimanyi, E. (2023). Towards Mobility Data Science (Vision Paper). arXiv preprint arXiv:2307.05717.




Social Consequences — Mobility Data Privacy

1. Local: Local differential privacy (LDP) allows individuals to protect their
data before sharing it with services
—> Privacy at data collection stage

2. Global: Differential privacy (DP) is used to anonymize and share
aggregate mobility data, ensuring your privacy even when data is
collected on a larger scale
- Commonly used to train machine learning models and create
synthetic data, ensuring privacy while still allowing for useful analysis

Strong privacy protections are needed even for seemingly anonymous data,
to prevent privacy breaches and misuse
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Social Consequences — Explainability
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> Mobility Al decisions should be understandable and NOT black boxes
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Transparency

In addition to data and software availability, also include:

Transparency

N Training time

N Sensitivity to hyperparameters

S Hardware used

N Spatio-temporal resolution and scope (if applicable)

N Potential usage of pre-trained models

N ...
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Performance vs. Resources: Trade-offs?

S How reusable is the model?

Transparency

S How sensitive is it to hyperparameter tuning for downstream tasks?
SN How often does it need to be retrained?

N Does it require a long training time but no future fine-tuning or a relatively short
training time with a constant need for retraining?

N Is the contribution worth the resources consumed?

N Explainability approaches are resource-intensive too
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Conclusion

S Mobility data needs strong privacy protections to prevent privacy breaches and
misuse

> Mobility Al may require more frequent training, tuning, and deployment to remain
relevant

S Ethical Al development needs to consider who profits and who has to carry the
burden

> Mobility Al should be trustworthy and explainable
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